Analysis of Three-Dimensional Roller Performance in a Micro-g Environment

Brian Roberts, Laurie Shook, Lisa Hossaini, Rob Cohen

Space Systems Laboratory University of Maryland

Shuttle Small Payloads Symposium 13 September 1999

Evolution of One-Way Clutches

• Allow torque to be transmitted in only one direction

Ratchet

- Stops at limited number of positions
- Limits torque that can be applied

Rollers

- Rollers wedge in one direction and roll in the other
- Nearly infinite number of stop positions

Sprags

- Two diagonals of sprag are different lengths, with one greater than the distance between the races
- Nearly infinite number of stop positions

†Lowell Corporation Ratchet Technology catalog

Space Systems Laboratory University of Maryland

[‡] Mechanisms and Mechanical Devices Sourcebook

Advantage of 3-D Sprags over 2-D Sprags

2-D Sprags

- Require lubricants
 - \Rightarrow Slip in thermal vacuum
- Two "line" contacts
 - ⇒ Require tight tolerances
- Small contact angle
 - ⇒ Results in high stress

NASA 3-D Sprags

- Require no lubricants
 - ⇒ No slipping in thermal vacuum
- Four "point" contacts
 - ⇒ Allow loose tolerances
- Large contact angle
 - \Rightarrow Results in low stress

What We're Doing

- Replacing the traditional ratchet mechanism in a hand wrench with three-dimensional (3-D) sprags and rollers
- Why?
 - Ratcheting wrench tools work inefficiently in confined spaces
 - Use of ratcheting tools during extravehicular activity (EVA)
 creates other problems
 - High back drive torque
 - Inability to lock in both directions
 - Lubrication
 - Ratcheting motion is fatiguing
- What advantage is there?
 - Short back throw
 Ability to lock in both directions
 - Lower back drive torque High maximum torque
 - No lubricants
 Lower perceived mental workload

EVA 3-D Roller Wrench Operation

Space Experiment Module Experiment

- Flew 3-D roller mechanism in space experiment module (SEM) inside get away special (GAS) canister on STS-95 [October 1998]
- Measured torque when 3-D rollers were used repeatedly in period of extended weightlessness
 - Applied torque of 30 in-lbf
 - Back drive torque less than 7 in-oz

SEM Experiment Test Setup

SEM Experiment Sample Data Run

<u>Time</u> <u>Event</u>

T = 0m : 0s Turn on the electronics

T = +0m:1s Turn on the motor

T = +2m : 40s Collect torque data

T = +2m : 50s Reverse motor

T = +2m : 51s Reverse motor again

(toward the original direction)

T = +3m : 1s Stop collecting data

T = +3m : 2s Turn off motor and electronics

SEM Experiment Integration

- Experiment mounted to SEM mounting plate
- SEM stacked in SEM carrier system, which provided power and timeline and data storage
- SEM carrier system placed in GAS canister

NASA Photo

[†] http://sspp.gsfc.nasa.gov/sem/experimenter/descriptions/module.html

[†] http://sspp.gsfc.nasa.gov/sem/experimenter/descriptions/support.html

Shuttle Integration and Flight

Photo captured from NASA TV

http://crystalballgsfc.nasa.gov/sp201/sts95/pict91.html

SEM Experiment Data

First Data Run

Last Data Run (Data Run 70)

150.745 150.746 150.747 150.748 150.749 150.750 150.751 150.752

Experiment Elapsed Time (h)

— Torque Sensor → Potentiometer

Data Run 33

SEM-04 Temperature and Battery Voltage

Lessons Learned and Future Plans

Lessons learned

- Zero-torque calibration when nothing was moving would have been useful
- Intensive series of ground tests limited by earlier than expected experiment delivery date
- Timeline and data collection driven by SEM software
- Plans for 3-D roller mechanism
 - Evaluate "deeper" groove/modified spring design
 - Failure test mechanism
 - Further quantify back drive torque (SEM data showed 2.0 ± 1.5 in-oz at beginning of life)

